September 2016: Patent on the Tuning-Fork Principle

Today (September 15th, 2016) the inventors Robert Jahns, Holger Runkowske, and Reinhard Knöchel were informed from the European Patent Office that their idea on the "tuning fork" sensor principle is protected now by the European patent EP 2 811 314 B1. Congratulations to the inventors!

A "tuning fork" sensor basically consists of two ME sensors, which are arranged on top and at the bottom of a mounting block. The inverse orientation of the individual sensors with respect to the suspension point (FR-4 substrate in the picture below) leads to distinguishable output signals for magnetic and vibrational excitations. If a magnetic field is applied to the tuning fork, the cantilevers are bent in opposite directions (e.g. both away from the centre, black arrows). The outputs of the upper and lower cantilevers are opposite in phase with respect to a common ground and thus produce a differential-mode signal. In the case of vibrational coupling, the cantilevers are predominantly bent in the same direction (green arrows) and produce co-phase signals of the two sensor outputs (common mode). The comparison of a tuning fork sensor with a single cantilever sensor (see figure below) reveals that the tuning fork shows a limit of detection of approximately 500 fT/Hz1/2 – a very good LOD for magnetoelectric thin film sensors - whereas the individual magnetoelectric cantilevers, similar to those of which the tuning fork is composed, have sensitivities of approximately 5 pT/Hz1/2. With superimposed white noise the effect of the tuning fork is even more distinct. Whereas the tuning fork experiences an increase in noise level of about a factor of roughly 4, the single magnetoelectric sensor shows a rise of approximately two decades.

Magnetoelectric tuning fork sensor (a). LOD plots of tuning fork setup (c) in comparison to a single sensor (b) with and without additional superimposed wideband noise. The dashed auxiliary lines indicate the noise level and the LOD. The resonance frequency was 958 Hz.


Financial Support

The Collaborative Research Center 1261 is funded by the German Research Foundation (DFG).

SFB1261 Microsite

Click here to visit our Microsite with information for students, teachers and the public (German and English version available).



Prof. Dr. Eckhard Quandt

Kiel University
Institute for Materials Science


Interner Server



Christian-Albrechts-Universität zu Kiel (CAU)

Christ.-Albrechts-Platz 4
D-24118 Kiel


University Hospital Schleswig-Holstein, Campus Kiel (UKSH)

Arnold-Heller-Straße 3
D-24105 Kiel


Fraunhofer Institute for Silicon Technology, Itzehoe (ISIT)

Fraunhoferstrasse 1
D-25524 Itzehoe  


IPN - Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik an der Universität Kiel

Olshausenstraße 62 
D-24118 Kiel

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.