Talks for the CRC Members in 2018

by Elizaveta V. Golubeva, Ural Federal University, Ekaterinburg

19.12.2018, 16:00 h, TF, Aquarium


The giant magnetoimpedance effect (GMI) is the change of the overall impedance of a ferromagnetic conductor upon application of an external magnetic field. The GMI phenomenon can be explained simplified with the classical skin effect and the dependency of the skin depth on the magnetic permeability of the sample. The effect has a very high sensitivity to changes in both magnetic properties of the sample and external magnetic fields [1]. Therefore, GMI is very promising in applications for various sensing purposes and sample analysis [2]. An example application of GMI is the detection of magnetic labels, such as magnetic nanoparticles (MNPs) embedded in living tissue or injected in blood flow. The basic idea is to magnetize the superparamagnetic NPs with a magnetic field to detect their stray fields with a GMI sensor. For several reasons, however, evaluating and measuring the stray fields of MNPs in living tissues is a very complex task. Our group at the Ural Federal University in collaboration with other research groups is pursuing solutions to overcome these challenges and optimize GMI sensors for specific applications.
In this presentation, the origin of the magnetoimpedance effect is discussed in general. An overview of recent applications is given with a focus on the detection of magnetic labels. Recent achievements are discussed and compared.
[1] N.A. Buznikov, et al., Biosensors and Bioelectronics, 117,366-372, (2018)
[2] T. Uchiyama, et al., Physica Status Solidi (a), 206, 639–643, (2009)

by Dr. Ulrike Struwe, Kompetenzzentrums Technik-Diversity-Chancengleichheit, Bielefeld

10.12.2018, 17:15 h, TF Aquarium


Der Weg zum Dr.-Titel ist mitunter lang und steinig. Bereits auf dem Weg dorthin stellt sich die Frage „Wie geht es danach weiter?“. Der interaktive Vortrag von Dr. Ulrike Struwe, Geschäftsführerin des Kompetenzzentrums Technik-Diversity-Chancengleichheit und Leiterin der Geschäftsstelle des Nationalen Paktes für Frauen in MINT-Berufen „Komm, mach MINT.“ stellt Karrierewege und -möglichkeiten nach der Promotion vor. Das Motto ist: Viele Wege führen zum Ziel!

by Prof. Dr. rer. nat. habil. Ursula van Rienen, Lehrstuhl Theoretische Elektrotechnik, Universität Rostock

06.09.2018, 17:00 h, TF, Aquarium


Deep Brain Stimulation (DBS) is a widely used neuronal stimulation therapy for movement disorders like Parkinson’s disease and dystonias. Simulation studies can help for a deeper understanding of this therapy and, in future, for a patient-specific therapy planning aiming to prevent side effects as well. On the other hand, simulations can help e.g. to optimally select stimulation parameters in animal models.

The dielectric properties of biological tissue are based on experimental data and are subject to uncertainty, which arises from difficulties associated with the measuring process such as electrode polarisation at low frequencies, changes in the conditions of the tissue samples post mortem, and inter-individual variations. Based on the current state of measurement techniques for the dielectric properties of biological tissue, it can be assumed that uncertainty in these measurements and the resulting tissue properties will be a non-negligible factor, which has to be considered in computational models of bio-electrical applications.

In this contribution, we will introduce to the simulation pipeline to compute the Volume of Tissue Activated for a human model including uncertainty quantification and show some exemplary simulation results.

by Dr. Giselher Herzer, Vacuumschmelze GmbH & Co. KG, Hanau

10.07.2018, 17:00 h, TF, Aquarium


Retailers lose billions of Euros per year to shoplifters. Department store detectives and video cameras are therefore increasingly being assisted by electronic article surveillance (EAS). Hundred thousands of such systems are meanwhile installed and millions of disposable security labels are being produced on a daily base. Basically all EAS-systems operate on the same principle: Articles are affixed with security labels which, if not deactivated at the cash register, respond to electromagnetic fields generated from pedestals at the store's exits. The response is picked up by an antenna in the pedestals, thereby triggering an alarm. Today’s security labels are disposable items which are also used to secure inexpensive articles. Moreover, EAS labels are increasingly integrated directly into products or packaging during the manufacturing or packaging process. One major requirement therefore is that the labels are small and cheap. Further requirements are that the labels are reliably detectable and deactivatable and, as one of the major requests, that they cause no false alarms.

One of the most wide-spread EAS systems is based on magnetoelastic sensors which represent the latest and most sophisticated technology. The sensor element is a short magnetostrictive amorphous alloy ribbon which is housed in a small cavity such that it can vibrate freely. It is excited by magnetic field pulses to longitudinal, resonant vibrations. Once an exciting tone burst is over, the mechanical vibrations ring down exponentially over a time period of several milliseconds, hereby inducing a characteristic voltage in the receiver antenna while the exciting field is off. The detection electronics traces these echo voltages and triggers alarm if it recognizes the typical characteristics (like resonant frequency and ring-down time) of the resonator.

The talk surveys the physics behind magnetoelastic EAS labels and illustrates how to customize the sensor material by appropriate alloy design and thermal treatment.

by Prof. Dr. Nian Sun, Northeastern University, Boston, USA

18.06.2018, 17:15 h, TF, Aquarium


The coexistence of electric polarization and magnetization in multiferroic materials provides great opportunities for realizing magnetoelectric coupling, including electric field control of magnetism, or vice versa, through a strain mediated magnetoelectric coupling in layered magnetic/ferroelectric multiferroic heterostructures [1-9]. Strong magnetoelectric coupling has been the enabling factor for different multiferroic devices, which however has been elusive, particularly at RF/microwave frequencies. In this presentation, I will cover the most recent progress on new integrated magnetoelectric materials, magnetoelectric NEMS (nanoelectromechanical system) based sensors and antennas. Specifically, we will introduce magnetoelectric multiferroic materials, and their applications in different devices, including: (1) novel ultra-compact RF NEMS acoustic magnetoelectric antennas immune from ground plane effect with < l0/100 in size, self-biased operation and potentially 1~2% voltage tunable operation frequency; and (2) ultra-sensitive RF NEMS magnetoelectric magnetometers with ultra-low noise of ~1pT/Hz1/2 at 10 Hz for DC and AC magnetic fields sensing. These novel magnetoelectric devices show great promise for applications in compact, lightweight and power efficient sensors and sensing systems, ultra-compact antennas and for radars, communication systems, biomedical devices, IoT, etc.

References: [1] N.X. Sun and G. Srinivasan, SPIN, 02, 1240004 (2012); [2] J. Lou, et al., Advanced Materials, 21, 4711 (2009); [3] J. Lou, et al. Appl. Phys. Lett. 94, 112508 (2009); [4] M. Liu, et al. Advanced Functional Materials, 21, 2593 (2011); [5] T. Nan, et al. Scientific Reports, 3, 1985 (2013); [6] M. Liu, et al. Advanced Materials, 25, 1435 (2013); [7] M. Liu, et al. Advanced Functional Materials, 19, 1826 (2009); [8] Ziyao Zhou, et al. Nature Communications, 6, 6082 (2015). [9] T. Nan, et al. Nature Comm. 8, 296 (2017).

by Dr. Andreas Winkler, Leibniz Institut für Festkörper- und Werkstoffforschung Dresden, Germany

14.06.2018, 17:00 h, TF, Aquarium


Since several decades, surface acoustic waves have been excited via interdigital transducers on piezoelectric chips with high accuracy and reproducibility. The first generation of such technological devices, namely radio-frequency filter elements including transversal filters and resonators, became a substantial piece for the operation of any wireless electronic device. In this field, progress is mainly related to migration-resistant materials, improved lithography techniques and advanced transducer design for increased frequency operation as well as to realize transfer functions of higher complexity. In addition, very promising SAW applications in the fields of sensors and actuators have been demonstrated in labs around the world within the last 20 years. These already include wireless, self-sufficient sensors and ID-tags, lab-on-a-chip devices for fundamental microfluidic tasks and on-chip aerosol generators. In contrast to their pure electro-mechanic ancestors, these devices interact with gases or complex (bio-)fluids or have to resist harsh environmental conditions. Thus, they require a completely different and a comprehensive scientific approach, which currently hinders their commercialization. In this presentation, promising applications of SAW devices are highlighted together with the most critical requirements related to the materials involved, energy efficiency issues and technology concepts.

by Prof. Dr. Richard Fu, University of Northumbria at Newcastle, UK

28.05.2018, 17:15 h, TF, Aquarium


Thin film acoustic wave devices especially surface acoustic waves (SAW) have been used for sample preparation (sorting, separating, mixing, nebulization and dispensing) as well as bio-sensing. This talk will focus on our recent work of flexible and wearable thin film acoustic wave lab-on-chip (mainly using ZnO and AlN films on flexible substrates) for acoustic wave based microfluidic applications. We report theoretical and experimental studies of the evolution, hybridization and decoupling of wave modes in the flexible acoustic wave devices, as well as their vibration patterns. thus providing a guide for different microfluidic applications. Thin film based flexible SAW devices have the potential to be integrated with other microfluidic and sensing technology on flexible substrates including CMOS integrated circuits to make novel lab-on-chip for bio-detection for wearable and flexible applications. SAW devices on commercial polymer and aluminum foils have been fabricated and various microfluidic functions, such as mixing, pumping, jetting have been demonstrated with bent and deformed acoustic wave devices.

by Prof. Dr. Andreas Bahr, CAU Kiel, inaugural lecture

26.04.2018, 17:15 h, TF, Aquarium


In neuroscience research the development of the brain and the treatment of diseases like certain forms of epilepsy are analyzed with genetic mouse disease models. For the special case of the recording from neonatal mice (2-3 cm, 3-5 g) an implantable system has been developed, that enables chronic recordings. To achieve this, an application specific integrated circuit (ASIC) has been developed in an advanced 130 nm CMOS technology. Moreover, an implant and a recording system for live view of neural data have been presented. The functionality of the integrated circuit and the suitability of the implant system have been confirmed with in-vivo experiments with adult and 12 days old mice.

by Dr. Tilmann Sander-Thömmes, Physikalisch-Technische Bundesanstalt, Berlin, Germany

23.04.2018, 17:15 h, TF, Aquarium


German title

Biomagnetische Sensor- und Auswertesysteme - Fortschritt durch einen modularen Ansatz



In the field of biomagnetism the application of mathematical algorithms has been as important as the hardware itself. Traditionally, the hardware (the sensor Array) was based on superconducting quantum interference devices (SQUIDs) and operated for decades without large modifications. In contrast to that the range of relevant mathematical algorithms increased at a steady pace. This was driven by factors such as an ever increasing PC based computing power, new physiological insights motivating the application of existing algorithms, and the development of new algorithms to test biophysical models among others.

After around three decades of SQUID based Hardware, now new magnetic field sensors with the potential to replace or complement SQUIDs are available or under development. The opportunity for new sensors is the consequence of clinical challenges unsolved by state-of-the art SQUID based systems and due to new technology allowing alternative quantum physics based sensors in a small sized housing. These new sensors often have extra capabilities compared with SQUIDs and naturally some disadvantages. I will illustrate the modular approach using the example of optically pumped magnetometers and the signal processing toolbox FieldTrip.


Short biography

Tilmann Sander-Thömmes studied Physics at University of Freiburg and ETH Zürich and graduated there in 1992. He continued to obtain a PhD in solid-state physics at Imperial College in London. Following two post-docs in Berlin he has been working at Physikalisch-Technische Bundesanstalt since 2000 in the laboratory for Biosignals. Since 1998 he is involved with measuring and analysing magnetic brain signals. He is an expert in magnetoencephalography using both SQUIDs and more recently optically pumped magnetometers.

by Prof. Dr. Jörg Wrachtrup, Institute for Quantum Science and Technology, University of Stuttgart, Germany

19.04.2018, 17:00 h, TF, Aquarium


The accuracy of measurements is limited by quantum mechanics. Ingenious demonstrations, like measuring gravitational fields or time have explored accuracy limits and reached fundamental obstructions. Yet, precision measurements so far are restricted to dedicated environmental conditions essentially excluding “every day” applications. In the talk I will discuss spin quantum sensors comprising a single or multiple electron spins. With such a system we measure a variety of quantities including electric and magnetic fields, temperature, and force under ambient conditions. We use nuclear spins to enhance the measurement accuracy of the electron spin e.g. via quantum error correction or as ancillary quantum bits as memory or for quantum Fourier transformation [1-3]. I will present a variety of applications ranging from quantum simulations to imaging of cellular structures. I will emphasize the engineering challenges of these sensors and discuss their use to e.g. measure biomagnetic fields.

[1] N. Aslam et al. Science 0.1126/science.aam8697 (2017)

[2] L. Schlipf et al. Science Advances 3:e1701116 (2017) DOI: 10.1126/sciadv.1701116 

[3] F. F. de Oliveira, et al. Nat. Commun. 8, 15409 doi: 10.1038/ncomms15409 (2017)



Prof. Dr. Eckhard Quandt

Kiel University
Institute for Materials Science


Interner Server



Christian-Albrechts-Universität zu Kiel (CAU)

Christ.-Albrechts-Platz 4
D-24118 Kiel


University Hospital Schleswig-Holstein, Campus Kiel (UKSH)

Arnold-Heller-Straße 3
D-24105 Kiel


Fraunhofer Institute for Silicon Technology, Itzehoe (ISIT)

Fraunhoferstrasse 1
D-25524 Itzehoe  


IPN - Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik an der Universität Kiel

Olshausenstraße 62 
D-24118 Kiel

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.