Biomagnetic Sensing and Processing – Progress Using a Modular Approach

by Dr. Tilmann Sander-Thömmes, Physikalisch-Technische Bundesanstalt, Berlin, Germany

23.04.2018, 17:15 h, TF, Aquarium

 

German title

Biomagnetische Sensor- und Auswertesysteme - Fortschritt durch einen modularen Ansatz

 

Abstract

In the field of biomagnetism the application of mathematical algorithms has been as important as the hardware itself. Traditionally, the hardware (the sensor Array) was based on superconducting quantum interference devices (SQUIDs) and operated for decades without large modifications. In contrast to that the range of relevant mathematical algorithms increased at a steady pace. This was driven by factors such as an ever increasing PC based computing power, new physiological insights motivating the application of existing algorithms, and the development of new algorithms to test biophysical models among others.

After around three decades of SQUID based Hardware, now new magnetic field sensors with the potential to replace or complement SQUIDs are available or under development. The opportunity for new sensors is the consequence of clinical challenges unsolved by state-of-the art SQUID based systems and due to new technology allowing alternative quantum physics based sensors in a small sized housing. These new sensors often have extra capabilities compared with SQUIDs and naturally some disadvantages. I will illustrate the modular approach using the example of optically pumped magnetometers and the signal processing toolbox FieldTrip.

 

Short biography

Tilmann Sander-Thömmes studied Physics at University of Freiburg and ETH Zürich and graduated there in 1992. He continued to obtain a PhD in solid-state physics at Imperial College in London. Following two post-docs in Berlin he has been working at Physikalisch-Technische Bundesanstalt since 2000 in the laboratory for Biosignals. Since 1998 he is involved with measuring and analysing magnetic brain signals. He is an expert in magnetoencephalography using both SQUIDs and more recently optically pumped magnetometers.

Contact

sfb1261@tf.uni-kiel.de

Chairman:

Prof. Dr. Eckhard Quandt

Kiel University
Institute for Materials Science

 

Internal server

 

CAU

Christian-Albrechts-Universität zu Kiel (CAU)

Christ.-Albrechts-Platz 4
D-24118 Kiel

UKSH

University Hospital Schleswig-Holstein, Campus Kiel (UKSH)

Arnold-Heller-Straße 3
D-24105 Kiel

ISIT

Fraunhofer Institute for Silicon Technology, Itzehoe (ISIT)

Fraunhoferstrasse 1
D-25524 Itzehoe  

IPN

IPN - Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik 

Olshausenstraße 62 
D-24118 Kiel

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
Ok