Project A2

Hybrid Magnetoelectric Sensors Based on Mechanically Soft Composite Materials

The aim of the project A2 is to design, fabricate, and characterize mechanically soft magnetostrictive and piezoelectric composite materials and hybrid magnetoelectric (ME) sensors made thereof. In this approach the magnetic field energy is transferred nearly completely to charge separation in the equally soft piezoelectric phase. Hence, the restoring forces for the magnetostrictive expansion will be mostly due to the coulomb potential arising from the charge separation. Thus, the project aims for a limit of detection (LOD) < 1 pT/Hz^1/2 at low frequencies < 30 Hz without high quality resonators which limit the bandwidth.

 

Franz Faupel
Prof. Dr.
Lead of projects A2, A4, B7
Rainer Adelung
Prof. Dr.
Lead of projects A2, A5
Stefan Schröder
M.Sc.
Doctoral researcher
Marleen Schweichel
M.Sc.
Doctoral researcher

 

Role within the Collaborative Research Centre

The Project A2 uses a combination of new hybrid materials. This facilitates the construction of sensor concepts that differ much from the conventional concepts in this CRC. This might help to circumvent limitations of the conventional concepts. This project is part of the focus group F1 “Modeling” and of the focus group F2 “Sensor Concepts”.

A1: Collaboration regarding the noise analysis and noise reduction (strong collaboration).
A3: Collaboration concerning MEMS compatibility and fabrication (strong collaboration).
A4: Collaboration with regard to the sensor readout, ΔE-effect of sensors.
A6: TEM investigations of the samples.
A8: Collaboration in the modeling of the sensors.
B1: Collaboration with regard to noise analysis and noise reduction (strong collaboration).
B2: Collaboration with regard to noise analysis and noise reduction (strong collaboration).
B7: Use of magneto-active polymers, without magnetic particles, as tissue materials.
Z1: Collaboration concerning MEMS compatibility and fabrication (strong collabration).
Z2: Collaboration in the sensor characterization.

Project-related Publications

S. Schröder, O. Polonskyi, T. Strunskus and F. Faupel. Nanoscale gradient copolymer films via single-step deposition from the vapor phase. Mater. Today, article in press (2020). DOI: 10.1016/j.mattod.2020.02.004

M. H. Burk, S. Schröder, W. Moormann, D. Langbehn, T. Strunskus, S. Rehders, R. Herges and F. Faupel. Fabrication of Diazocine-Based Photochromic Organic Thin Films via Initiated Chemical Vapor Deposition. Macromolecules 53, 1164 (2020). DOI: doi.org/10.1021/acs.macromol.9b02443

M. Scharnberg, S. Rehders, Ö. Adiyaman, S. Schröder, T. Strunskus and F. Faupel. Evaporated electret films with superior charge stability based on Teflon AF 2400. Org. Electron. 70, 167 (2019). DOI: 10.1016/j.orgel.2019.04.016

S. Schröder, T. Strunskus, S. Rehders, K. K. Gleason and F. Faupel. Tunable polytetrafluoroethylene electret films with extraordinary charge stability synthesized by initiated chemical vapor deposition for organic electronics applications. Sci. Rep. 9, 2237 (2019). DOI: 10.1038/s41598-018-38390-w

M. Mintken, M. Schweichel, S. Schröder, S. Kaps, J. Carstensen, Y. K. Mishra, T. Strunskus, F. Faupel and R. Adelung. Nanogenerator and piezotronic inspired concepts for energy efficient magnetic field sensors. Nano Energy 56, 420 (2019). DOI: 10.1016/j.nanoen.2018.11.031

Oral C. Aktas, S. Schröder, S. Veziroglu, M. Z. Ghori, A. Haidar, O. Polonskyi, T. Strunskus, K. K. Gleason and F. Faupel. Superhydrophobic 3D Porous PTFE/TiO2 Hybrid Structures. Adv. Mater. Interfaces 6, 1801967 (2019). DOI: 10.1002/admi.201801967

SFB1261 Microsite

Click here to visit our Microsite with information for students, teachers and the public (German and English version available).

Recent Publications

N. Lukat, R.-M. Friedrich, B. Spetzler, C. Kirchhof, C. Arndt, L. Thormälen, F. Faupel, C. Selhuber-Unkel, Mapping of magnetic nanoparticles and cells using thin film magnetoelectric sensors based on the delta-E effect Sens. Actuators A, 309. 112023, (2020), https://doi.org/10.1016/j.sna.2020.112023

A. Kittmann, C. Müller, P. Durdaut, L. Thormählen, V. Schell, F. Niekiel, F. Lofink, D. Meyners, R. Knöchel, M. Höft, J. McCord, E. Quandt, Sensitivity and Noise Analysis of SAW Magnetic Field Sensors with varied Magnetostrictive Layer Thicknesses., Sens. Actuators A, 311, 111998 (2020). doi: https://doi.org/10.1016/j.sna.2020.111998

A. Galka, S. Monntaha, M. Siniatchkin, Constrained Expectation Maximisation Algorithm for Estimating ARMA models in State Space Representation, EURASIP Journal on Advances in Signal Processing, Springer Nature, accepted (March 2020).

 

Contact

sfb1261@tf.uni-kiel.de

Chairman:

Prof. Dr. Eckhard Quandt

Kiel University
Institute for Materials Science

 

Internal server

 

CAU

Christian-Albrechts-Universität zu Kiel (CAU)

Christ.-Albrechts-Platz 4
D-24118 Kiel

UKSH

University Hospital Schleswig-Holstein, Campus Kiel (UKSH)

Arnold-Heller-Straße 3
D-24105 Kiel

ISIT

Fraunhofer Institute for Silicon Technology, Itzehoe (ISIT)

Fraunhoferstrasse 1
D-25524 Itzehoe  

IPN

IPN - Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik 

Olshausenstraße 62 
D-24118 Kiel

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
Ok