Project A3

Resonant Magnetoelectric Sensors

The aim of this project is to improve the performance of resonant magnetoelectric sensors. Investigations will include concepts related to bending mode resonant sensors, coupled resonators, longitudinal mode resonators, and frequency tunable resonators. Special approaches are related to measures to increase the quality factor using quartz substrates, polysilicon substrates or lateral bulk mode resonators, and to reduce acoustic cross-sensitivity using high frequency resonances or anti-symmetric vibrational modes. Frequency tuning will be investigated by two alternative approaches.


Eckhard Quandt
Prof. Dr.-Ing.
Spokesperson of the CRC 1261, lead of projects A3, A7
Berhard Wagner
Prof. Dr.-Ing.
Lead of project A3
Anne Kittmann
M. Sc.
Doctoral researcher


Role within the Collaborative Research Centre

Because mechanical resonances in ME sensors are an important approach for increasing the sensor performance, the concepts of project A3 are essential for most work within the CRC1261, especially with regard to the B projects. The collaborations in detail are:

A1: Characterization of and reconcilement with regard to magnetostrictive phases.
A2: Collaboration concerning MEMS compatibility and fabrication.
A4: Fabrication of different resonant ME sensors for the use as ΔE-effect sensors, collaboration in the characterization of the sensor’s properties.
A5: ME sensors for piezotronic measurements.
A6: TEM characterization of shape memory alloys for ME sensors.
A7: Collaboration on high Q sensors for electric field modulated sensors.
A8: Modeling of resonant sensors.
B1: Design of analogous signal processing for different resonant ME sensors, noise density characterization.
B2: Fabrication of narrow-band ME sensors.
B5: Resonant, narrow band ME sensors for deep brain stimulation.
B7: Fabrication of narrow-band resonant sensors for 3D-Imaging of magnetically labeled cells.
Z1: Use of partially processed wafers based on the technology platform, collaboration in the fabrication of newly developed resonant sensors.
Z2: Collaboration in the limit of detection (LOD) characterization.

Project A3 will contribute to the focus group F1 “Modeling” and F2 “Sensor Concepts” on issues of sensor technology and concepts.

Project-related Publications

A. Kittmann, P. Durdaut, S. Zabel, J. Reermann, J. Schmalz, B. Spetzler, D. Meyners, N. X. Sun, J. McCord, M. Gerken, G. Schmidt, M. Höft, R. Knöchel, F. Faupel, and E. Quandt: Wide Band Low Noise Love Wave Magnetic Field Sensor System; Scientific Reports, vol. 8, no. 278, January 2018;

S. Fichtner, N. Wolff, G. Krishnamurthy, A. Petraru, S. Bohse, F. Lofink, S. Chemnitz, H. Kohlstedt, L. Kienle, and B. Wagner: Identifying and overcoming the interface originating c-axis instability in highly Sc enhanced AlN for piezoelectric micro-electromechanical systems. Journal of Applied Physics 122, 035301, July 2017. 

E. Yarar, S. Salzer, V. Hrkac, A. Piorra, M. Höft, R. Knöchel, L. Kienle, and E. Quandt: Inverse Bilayer Magnetoelectric Thin Film Sensor; Appl. Phys. Lett. 109, 022901 (2016);

E. Yarar, V. Hrkac, C. Zamponi, A. Piorra, L. Kienle, and E. Quandt: Low Temperature Aluminum Nitride Thin Films for Sensory Applications, AIP Advances, 6, 075115 (2016);

S. Zabel, J. Reermann, S. Fichtner, C. Kirchhof, E. Quandt, B. Wagner, G. Schmidt, and F. Faupel: Multimode Delta-E Effect Magnetic Field Sensors with Adapted Electrodes; Appl. Phys. Lett. 108, 222401 (2016);

Financial Support

The Collaborative Research Center 1261 is funded by the German Research Foundation (DFG).

SFB1261 Microsite

Click here to visit our Microsite with information for students, teachers and the public (German and English version available).

Recent Publications

J. Reermann, P. Durdaut, S. Salzer, T. Demming, A. Piorra, E. Quandt, N. Frey, M. Höft, and G. Schmidt: Evaluation of Magnetoelectric Sensor Systems for Cardiological Applications, Measurement (Elsevier), ISSN 0263-2241, 2017,

S. B. Hrkac, C. T. Koops, M. Abes, C. Krywka, M. Müller, M. Burghammer, M. Sztucki, T. Dane, Kaps, Y. K. Mishra,R. Adelung, J. Schmalz, M. Gerken, E. Lage, C. Kirchhof, E. Quandt, O. M. Magnussen, and B. M. Murphy: Tunable Strain in Magnetoelectric ZnO Microrod Composite Interfaces; ACS Appl. Mater. Interfaces, 2017, 9 (30), pp 25571–25577; DOI: 10.1021/acsami.6b15598




Prof. Dr. Eckhard Quandt

Kiel University
Institute for Materials Science


Interner Server



Christian-Albrechts-Universität zu Kiel (CAU)

Christ.-Albrechts-Platz 4
D-24118 Kiel


University Hospital Schleswig-Holstein, Campus Kiel (UKSH)

Arnold-Heller-Straße 3
D-24105 Kiel


Fraunhofer Institute for Silicon Technology, Itzehoe (ISIT)

Fraunhoferstrasse 1
D-25524 Itzehoe  


IPN - Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik an der Universität Kiel

Olshausenstraße 62 
D-24118 Kiel