Project A8

Modeling of Magnetoelectric Sensors

The aim of project A8 is a theoretical investigation of the behavior of magnetoelectric (ME) sensors based on piezoelectric and magnetostrictive composite materials. Resonant ME sensors, ME sensors employing the ΔE-effect, ME sensors with segmented electrodes, mechanical and magnetic field concentrator geometries, coupled resonators and sensor arrays will be investigated. For each type of sensor system simulation methods will be implemented in order to calculate the signal strength and the signal-to-noise ratio. Systematic studies of geometry-dependent and material-dependent effects as well as scaling effects will be carried out.

 

 

Martina Gerken
Prof. Dr.-Ing.
Lead of projects A8, IRTG
Matthias Krantz
Dr.
Postdoc
Julius Schmalz
M.Sc.
Doctoral researcher

 

Role within the Collaborative Research Centre

This project will collaborate closely on the sensor design with the technology groups in research area A as well as with the modeling activities in research area B.

A1: Magnetostrictive material parameters and domain properties are obtained from A1 and calculations of stress distributions in magnetostrictive layers are compared to the experimental results in A1.
A2: Finite element method calculations of mechanical deformations provided to A2.
A3: Close collaboration concerning the design of resonant ME sensors. Material parameters and fabrication restrictions are obtained from A3. Sensor layouts are provided to A3. Experimental and theoretical results are compared to interpret and improve the sensor behavior. Tuning of the sensor frequency and quality factor are investigated jointly.
A4: Close collaboration concerning the design of ΔE-effect ME sensors. Material parameters and fabrication restrictions are obtained from A4. Sensor layouts are provided to A4. Experimental and theoretical results are compared to interpret and improve the sensor behavior.
A5, A6: Finite element method calculations of mechanical deformations provided to A5 and A6.
A7: Sensor designs for electric modulation are provided to A7. A comparison of experimental and theoretical results is employed to enhance the simulations method and provide better predictions.
B1: Noise models developed in B1 will be integrated into the simulation software and SNR values for complex sensor geometries will be provided to B1.
B3: Jointly the effect of non-ideal, i.e., extended sensors with fabrication variations, on the solution of the inverse problem will be investigated.
B7: Together with B7 also effects regarding caused by the sensor geometry will be investigated.  


Exchange on modeling topics with other projects will take place in the focus group F1 “Modeling”. The project will also be active in the focus group F2 “Sensor Concepts” to discuss fabrication possibilities and provide sensor layout suggestions. This project will support the dissemination activities in project SOP and the doctoral researchers will be active in the IRTG.


Project-related Publications

A. Kittmann, P. Durdaut, S. Zabel, J. Reermann, J. Schmalz, B. Spetzler, D. Meyners, N. X. Sun, J. McCord, M. Gerken, G. Schmidt, M. Höft, R. Knöchel, F. Faupel, and E. Quandt: Wide Band Low Noise Love Wave Magnetic Field Sensor System; Scientific Reports, vol. 8, no. 278, January 2018; http://dx.doi.org/10.1038/s41598-017-18441-4

S. B. Hrkac, C. T. Koops, M. Abes, C. Krywka, M. Müller, M. Burghammer, M. Sztucki, T. Dane, Kaps, Y. K. Mishra,R. Adelung, J. Schmalz, M. Gerken, E. Lage, C. Kirchhof, E. Quandt, O. M. Magnussen, and B. M. Murphy: Tunable Strain in Magnetoelectric ZnO Microrod Composite Interfaces; ACS Appl. Mater. Interfaces, 2017, 9 (30), pp 25571–25577; DOI: 10.1021/acsami.6b15598

J. L. Gugat; M. C. Krantz; J. Schmalz; and M. Gerken: Signal-to-Noise Ratio in Cantilever Magnetoelectric Sensors, in IEEE Transactions on Magnetics; http://dx.doi.org/10.1109/tmag.2016.2557305

J. L. Gugat, J. Schmalz, M. C. Krantz and M. Gerken: Magnetic Flux Concentration Effects in Cantilever Magnetoelectric Sensors, in IEEE Transactions on Magnetics, vol. 52, no. 5, pp. 1-8, May 2016; http://dx.doi.org/10.1109/TMAG.2015.2509948.

Financial Support

The Collaborative Research Center 1261 is funded by the German Research Foundation (DFG).

SFB1261 Microsite

Click here to visit our Microsite with information for students, teachers and the public (German and English version available).

Recent Publications

J. Reermann, P. Durdaut, S. Salzer, T. Demming, A. Piorra, E. Quandt, N. Frey, M. Höft, and G. Schmidt: Evaluation of Magnetoelectric Sensor Systems for Cardiological Applications, Measurement (Elsevier), ISSN 0263-2241, 2017, https://doi.org/10.1016/j.measurement.2017.09.047

S. B. Hrkac, C. T. Koops, M. Abes, C. Krywka, M. Müller, M. Burghammer, M. Sztucki, T. Dane, Kaps, Y. K. Mishra,R. Adelung, J. Schmalz, M. Gerken, E. Lage, C. Kirchhof, E. Quandt, O. M. Magnussen, and B. M. Murphy: Tunable Strain in Magnetoelectric ZnO Microrod Composite Interfaces; ACS Appl. Mater. Interfaces, 2017, 9 (30), pp 25571–25577; DOI: 10.1021/acsami.6b15598

 

Contact

sfb1261@tf.uni-kiel.de

Chairman:

Prof. Dr. Eckhard Quandt

Kiel University
Institute for Materials Science

 

Interner Server

 

CAU

Christian-Albrechts-Universität zu Kiel (CAU)

Christ.-Albrechts-Platz 4
D-24118 Kiel

UKSH

University Hospital Schleswig-Holstein, Campus Kiel (UKSH)

Arnold-Heller-Straße 3
D-24105 Kiel

ISIT

Fraunhofer Institute for Silicon Technology, Itzehoe (ISIT)

Fraunhoferstrasse 1
D-25524 Itzehoe  

IPN

IPN - Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik an der Universität Kiel

Olshausenstraße 62 
D-24118 Kiel