Prof. Dr.
Lead of projects A2, A4, B7
Prof. Dr.
Lead of project B7
Role within the Collaborative Research Centre
Project B7 takes ME sensors towards bioengineering applications. As the project is based on the expertise of a number of other projects (e.g. on sensor design, fabrication, simulation), there are many connections to and interactions with other projects.
A1 :
The quality of the magnetic films will directly improve MPM, especially FeCo/FeTb thin films will be interesting, because of their reduced permeability, which leads to better spatial resolution.
A2 :
Aero-polymer networks.
A3 :
Development of resonant sensors.
A5 :
Investigation of ΔE-sensor system noise with respect to applied signals and operation of sensor electronics.
B1 :
The analog sensor front-end will be adapted to the special needs of MPM with project B1 .
B2 :
The real-time system, developed in project B2 , will improve with signal acquisition and post processing.
A8 :
Transfer of noise models to be integrated into the more general multiscale numerical modeling of ME sensor systems in order to accurately predict the limit of dectection (LOD).
B2 :
Definition of the optimal interface between analogue and digital processing. Combined analogue and digital signal processing, including iterative improvement of measurement performance through successive application of digitally derived correction signals in the analogue domain.
B3 :
Project B3 will combine the forward calculations and measurements of known particle distributions to develop a solution of the inverse problem.
Z1 :
Small sensors are crucial for high spatial resolution, hence miniaturized MEMS sensors are important.
Z2 :
Promising sensor candidates will be characterized and preselected in cooperation with Z2 .
Project B7 will contribute to the focus group F3 “Biomagnetic Signal Analysis” .
Project-related Publications
N. Lukat, R.-M. Friedrich, B. Spetzler, C. Kirchhof, C. Arndt, L. Thormälen, F. Faupel, C. Selhuber-Unkel, Mapping of magnetic nanoparticles and cells using thin film magnetoelectric sensors based on the delta-E effect Sens. Actuators A, 309. 112023, (2020), https://doi.org/10.1016/j.sna.2020.112023
M. Timmermann, N. Lukat, L. Schneider, W. C. Shields IV, G. Lopez, C. Selhuber-Unkel, Migration of microparticle-containing amoebae through constricted environments. ACS Biomaterials Science & Engineering, 6 , 2
S. Thapa, N. Lukat, C. Selhuber-Unkel, A. G. Cherstvy, R. Metzler, Transient superdiffusion of polydisperse vacuoles inside highly-motile amoeboid cells. Journal of Chemical Physics 150, 144901 (2019). https://doi.org/10.1063/1.5086269
M. Taale, D. Krüger, E. Ossei-Wusu, F. Schütt, M. A. Ur Rehamn, Y. Mishra, J. Marx, N. Stock, B. Fiedler, A. Boccaccini, R. Willumeit-Römer, R. Adelung, C. Selhuber-Unkel, Systematically designed periodic electrophoretic deposition for decorating 3D carbon-based scaffolds with bioactive nanoparticles. ACS Biomaterials Science & Engineering, 5, 9, 4393-4404 (2019). https://doi.org/10.1021/acsbiomaterials.9b00102
D. Krapf, N. Lukat, E. Marinari, R. Metzler, G. Oshanin, C. Selhuber-Unkel, A. Squarcini, L. Stadler, M. Weiss, X. Xu, Spectral content of a single non-Brownian trajectory. Physical Review X, 9: 011019 (2019). DOI: 10.1103/PhysRevX.9.011019
S. Gutekunst, K. Siemsen, S. Huth, A. Möhring, B. Hesseler, M. Timmermann, I. Paulowicz, Y. Mishra, L. Siebert, R. Adelung, C. Selhuber-Unkel, 3D Hydrogels Containing Interconnected Microchannels of Subcellular Size for Capturing Human Pathogenic Acanthamoeba Castellanii. ACS Biomaterials Science & Engineering (2019). 10.1021/acsbiomaterials.8b01009 .
M. Taale, F. Schütt, T. Carey, J. Marx, Y. K. Mishra, B. Fiedler, F. Torrisi, R. Adelung, C. Selhuber-Unkel, Biomimetic Carbon-Fiber Systems Engineering, A Modular Design Strategy to Generate Biofunctional Composites from Graphene and Carbon Nanofibers. ACS Applied Materials & Interfaces, 11(5): 5325-5335 (2019). https://doi.org/10.1021/acsami.8b17627
Friedrich, R.-M., S. Zabel, A. Galka, N. Lukat, J.-M. Wagner, C. Kirchhof, E. Quandt, J. McCord, C. Selhuber-Unkel , M. Siniatchkin, F. Faupel, Magnetic particle mapping using magnetoelectric sensors as an imaging modality. Scientific Reports , 9: 2086 (2019). https://doi.org/10.1038/s41598-018-38451-0
M. Taale , F. Schütt, K. Zheng, Y. Mishra, A. Boccaccini, R. Adelung, C. Selhuber-Unkel, Bioactive Carbon Based Hybrid 3D Scaffolds for Osteoblast Growth. ACS Applied Materials & Interfaces (2018). https://doi.org/10.1021/acsami.8b13631
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.