Project B7

3D-Imaging of Magnetically Labeled Cells

In project B7, magnetoelectric sensors will be utilized to map distributions of magnetically marked living cells in 3D biomaterial scaffolds. Small size, great sensitivity anisotropy and sharp mechanical resonance enable the MEMS sensors to detect higher harmonics of the magnetically excited superparamagnetic markers. Spatial resolution shall be achieved by mapping the sample or by sensor arrays and by solving the inverse problem. Magnetic cell loading strategies and scaffolds for controlling cell distributions will be developed. Experiments on macroscopic demonstrators and on living cells in scaffold materials will be carried out.


Franz Faupel
Prof. Dr.
Lead of projects A2, A4, B7
C. Selhuber-Unkel
Prof. Dr.
Lead of project B7
Angeles De la Cruz García
Doctoral Researcher


Role within the Collaborative Research Centre

Project B7 takes ME sensors towards bioengineering applications. As the project is based on the expertise of a number of other projects (e.g. on sensor design, fabrication, simulation), there are many connections to and interactions with other projects.

A1: The quality of the magnetic films will directly improve MPM, especially FeCo/FeTb thin films will be interesting, because of their reduced permeability, which leads to better spatial resolution.
A2: Aero-polymer networks.
A3: Development of resonant sensors.
A5: Investigation of ΔE-sensor system noise with respect to applied signals and operation of sensor electronics.
B1: The analog sensor front-end will be adapted to the special needs of MPM with project B1.
B2: The real-time system, developed in project B2, will improve with signal acquisition and post processing.
A8: Transfer of noise models to be integrated into the more general multiscale numerical modeling of ME sensor systems in order to accurately predict the limit of dectection (LOD).
B2: Definition of the optimal interface between analogue and digital processing. Combined analogue and digital signal processing, including iterative improvement of measurement performance through successive application of digitally derived correction signals in the analogue domain.
B3: Project B3 will combine the forward calculations and measurements of known particle distributions to develop a solution of the inverse problem.
Z1: Small sensors are crucial for high spatial resolution, hence miniaturized MEMS sensors are important.
Z2: Promising sensor candidates will be characterized and preselected in cooperation with Z2.  

Project B7 will contribute to the focus group F3 “Biomagnetic Signal Analysis”.

Project-related Publications

K. SiemsenS. Rajput, F. Rasch, F. Taheri, R. Adelung, J. Lammerding, C. Selhuber-Unkel, Tunable 3D Hydrogel Microchannel Network to Study Confined Mammalian Cell Migration. AdvHealthcare Mater2021, 2100625 DOI:10.1002/adhm.202100625

F. Block, F. Klingbeil, S. Deshpande, U. Sajjad, D. Seidler, C. ArndtS. SindtC. Selhuber-Unkel,  J. McCord (2021): Unidirectional transport of superparamagnetic beads and biological cells along oval magnetic elements. Appl. Phys. Lett, 118, 232405.

B. Spetzler, E. V. Golubeva, R.-M. Friedrich, S. Zabel, C. Kirchhof, D. Meyners, J. McCord, F. Faupel, Magnetoelastic Coupling and Delta-E Effect in Magnetoelectric Torsion Mode Resonators, Sensors 21, 2022 (2021).

C. Arndt , M. Hauck, I. Wacker, B. Zeller-Plumhoff, F. Rasch, M. Taale , AS Nia, X. Feng, R. Adelung, RR Schroeder, F. Schütt, C. Selhuber-Unkel ( 2021): Microengineered hollow graphene tube systems generate conductive hydrogels with extremely low filler concentration. Nano letters. 21, 8, 3690-3697.

N. Lukat, R.-M. Friedrich, B. Spetzler, C. Kirchhof, C. Arndt, L. Thormälen, F. Faupel, C. Selhuber-Unkel, Mapping of magnetic nanoparticles and cells using thin film magnetoelectric sensors based on the delta-E effect Sens. Actuators A, 309. 112023, (2020),

M. Timmermann, N. Lukat, L. Schneider, W. C. Shields IV, G. Lopez, C. Selhuber-Unkel, Migration of microparticle-containing amoebae through constricted environments. ACS Biomaterials Science & Engineering,  6, 2, 889-897 (2020). 

S. Thapa, N. LukatC. Selhuber-Unkel, A. G. Cherstvy, R. Metzler, Transient superdiffusion of polydisperse vacuoles inside highly-motile amoeboid cells. Journal of Chemical Physics 150, 144901 (2019).

M. Taale, D. Krüger, E. Ossei-Wusu, F. Schütt, M. A. Ur Rehamn, Y. Mishra, J. Marx, N. Stock, B. Fiedler, A. Boccaccini, R. Willumeit-Römer, R. Adelung, C. Selhuber-Unkel, Systematically designed periodic electrophoretic deposition for decorating 3D carbon-based scaffolds with bioactive nanoparticles. ACS Biomaterials Science & Engineering, 5, 9, 4393-4404 (2019).

D. Krapf, N. Lukat, E. Marinari, R. Metzler, G. Oshanin, C. Selhuber-Unkel, A. Squarcini, L. Stadler, M. Weiss, X. Xu, Spectral content of a single non-Brownian trajectory. Physical Review X, 9: 011019 (2019). DOI: 10.1103/PhysRevX.9.011019

S. Gutekunst, K. Siemsen, S. Huth, A. Möhring, B. Hesseler, M. Timmermann, I. Paulowicz, Y. Mishra, L. Siebert, R. Adelung, C. Selhuber-Unkel, 3D Hydrogels Containing Interconnected Microchannels of Subcellular Size for Capturing Human Pathogenic Acanthamoeba Castellanii. ACS Biomaterials Science & Engineering (2019). 10.1021/acsbiomaterials.8b01009.

M. Taale, F. Schütt, T. Carey, J. Marx, Y. K. Mishra, B. Fiedler, F. Torrisi, R. Adelung, C. Selhuber-Unkel, Biomimetic Carbon-Fiber Systems Engineering, A Modular Design Strategy to Generate Biofunctional Composites from Graphene and Carbon Nanofibers. ACS Applied Materials & Interfaces, 11(5): 5325-5335 (2019).

Friedrich, R.-M., S. Zabel, A. Galka, N. Lukat, J.-M. Wagner, C. Kirchhof, E. Quandt, J. McCord, C. Selhuber-Unkel, M. Siniatchkin, F. Faupel, Magnetic particle mapping using magnetoelectric sensors as an imaging modality. Scientific Reports, 9: 2086 (2019).

M. Taale, F. Schütt, K. Zheng, Y. Mishra, A. Boccaccini, R. Adelung, C. Selhuber-Unkel, Bioactive Carbon Based Hybrid 3D Scaffolds for Osteoblast Growth. ACS Applied Materials & Interfaces (2018).

SFB1261 Microsite

Click here to visit our Microsite with information for students, teachers and the public (German and English version available).

Recent Publications

A. Kittmann, C. Müller, P. Durdaut, L. Thormählen, V. Schell, F. Niekiel, F. Lofink, D. Meyners, R. Knöchel, M. Höft, J. McCord, E. Quandt, Sensitivity and Noise Analysis of SAW Magnetic Field Sensors with varied Magnetostrictive Layer Thicknesses., Sens. Actuators A, 311, 111998 (2020). doi:

N. Lukat, R.-M. Friedrich, B. Spetzler, C. Kirchhof, C. Arndt, L. Thormälen, F. Faupel, C. Selhuber-Unkel, Mapping of magnetic nanoparticles and cells using thin film magnetoelectric sensors based on the delta-E effect Sens. Actuators A, 309. 112023, (2020),

A. Galka, S. Monntaha, M. Siniatchkin, Constrained Expectation Maximisation Algorithm for Estimating ARMA models in State Space Representation, EURASIP Journal on Advances in Signal Processing, Springer Nature, accepted (March 2020).




Prof. Dr. Gerhard Schmidt

Kiel University
Institute for Electrical Engineering and Information Engineering


Internal server



Christian-Albrechts-Universität zu Kiel (CAU)

Christ.-Albrechts-Platz 4
D-24118 Kiel


University Hospital Schleswig-Holstein, Campus Kiel (UKSH)

Arnold-Heller-Straße 3
D-24105 Kiel


Fraunhofer Institute for Silicon Technology, Itzehoe (ISIT)

Fraunhoferstrasse 1
D-25524 Itzehoe  


IPN - Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik 

Olshausenstraße 62 
D-24118 Kiel

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.